
Oakestra: An Orchestration Framework for Edge Computing
Giovanni Bartolomeo Simon Bäurle Nitinder Mohan Jörg Ott

Technical University of Munich

ABSTRACT
Edge computing enables developers to deploy their services on com-
pute resources deployed closer to the users. The abstraction requires
powerful orchestration capabilities and the resolution of complex
optimization problems. While edge computing is a consistently
growing trend, the community (research and industry) still largely
embraces adaptations and extensions of existing cloud technolo-
gies that have been proven ineffective on edge (e.g. Kubernetes). In
this work, we present Oakestra, a novel hierarchical orchestration
framework specifically designed for supporting service operation
over heterogeneous edge infrastructures. In this demonstration, we
showcase the various features and operations of Oakestra using
our latency-critical augmented reality (AR) application.

CCS CONCEPTS
• Computer systems organization→ Distributed architectures;
Heterogeneous (hybrid) systems; • Software and its engineer-
ing → Development frameworks and environments.

KEYWORDS
Edge Computing, Orchestration Framework, ResourceManagement

ACM Reference Format:
Giovanni Bartolomeo, Simon Bäurle, NitinderMohan, JörgOtt. 2022. Oakestra:
An Orchestration Framework for Edge Computing. In ACM SIGCOMM 2022
Conference (SIGCOMM ’22 Demos and Posters), August 22–26, 2022, Amster-
dam, Netherlands. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3546037.3546056

1 INTRODUCTION
Within a decade since inception, edge computing has found a wide
range of industrial and research use-cases [14, 23, 24]. In order
to cope with the strict QoS requirements of latency-critical ap-
plications [11, 22], orchestration frameworks for edge computing
must support efficient service management along with cloud of-
floading capabilities [1, 26]. Heterogeneity of the resources and
fluctuations in the network makes orchestration particularly chal-
lenging [9, 10, 13, 25]. Popular approaches for orchestrating edge
infrastructures adapt existing cloud-native technologies [27]. For
example, solutions like Kubernetes (k8s) [6], even the lightweight
distributions like k3s [8], KubeEdge [7], and microk8s [5] struggle
at the edge due to their strong consistency assumptions [4, 20]. Fur-
thermore, edge adaptations of k8s [17, 18, 20] carry-forward the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9434-5/22/08.
https://doi.org/10.1145/3546037.3546056

Cluster B

Root
Scheduler

System
Manager

Service DB

Root Orchestrator

Cluster Orchestrator

Cluster
Manager

Service DB

Cluster
Scheduler

Service
Manager

Service
Manager

W
eb

/C
on

so
le

. . .

Cluster A

Deployment
Descriptor

Cluster DB

Cluster C

Node DB

Node
Engine

ARM Worker n

Net
Manager

Execution
Runtime

Node
Engine

x86 Worker 1

Net
Manager

Execution
Runtime

Figure 1: Oakestra Architecture
burden of k8s footprint on contrained hardware resources. Other re-
search orchestration approaches at the edge like [2, 15, 16, 19, 21, 28]
also fail to (a) integrate cloud and edge workloads with minimal
efforts, (b) manage geographically distributed heterogeneous hard-
ware clusters, and (c) interconnect coordinated microservices con-
sidering diverse processing and network constraints. As a solution,
with our work we bring the following contributions:
(1)We propose Oakestra, a novel hierarchical orchestration frame-
work that supports federated infrastructures for application deploy-
ment, management, and computation offloading. Different clusters
of heterogeneous resources over multiple geographical locations
can be combined to build a federated cloud-to-edge continuum.
We implement Oakestra as lightweight and scalable framework
supporting compute-constrained edge devices in combination with
powerful cloud resources with minimal overhead.
(2) Application providers can deploy services at the edge by speci-
fying high-level SLA, such as hardware, latency, bandwidth, etc. as
constraints within deployment descriptors. Oakestra’s hierarchical
management structure, in conjunction with the delegated service
scheduling priciple, allows it to decentralize task placement and
find effective deployment much faster than the state-of-the-art.
(3) Using semantic IP addresses we natively support flexible and
transparent load balancing techniques. This way, we provide sup-
port for service mobility and hardware constraints while enabling
easy portability of applications as no code adaptation is required.
Moreover, the platform provides an overlay network for service-to-
service communication to allow the traversal of NATs and firewalls.

2 OAKESTRA: A PRIMER
Oakestra is a lightweight orchestration framework natively de-
signed to support the many constraints of edge environments. The
key innovation lies in the two-tier logical hierarchical orchestra-
tion of compute resources which, unlike flat architectures of k8s-
inspired frameworks, decomposes the control plane management

SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands Bartolomeo, et al.

Camera

Pre-
Processing

(Pre)

Object
Detection

(Obj)

Object
Recognition

(Rec)

Car

Display

Car

Figure 2: AR Application Pipeline

into many clusters. As shown in fig. 1, each cluster is managed by
its local cluster orchestrator which is only responsible for resources
within its cluster. The cluster orchestrator coordinates with the par-
ent root orchestrator and sends it aggregated resource utilization of
the cluster (such as CPU/GPU cores, memory, and storage) and cur-
rent service operation statistics (e.g. resources consumed, location,
latency, etc.). Application developers only interact with the root
orchestrator for deploying their services at the edge – submitting
the deployment descriptor containing the SLA requirements along
with the service code via API/CLI/Web UI. The SLA may include
latency thresholds or geographical area constraints, resource re-
quirements (bandwidth in/out, vCPU/vGPU/vTPU cores, memory,
and disk size), and convergence time for service scheduling opera-
tions. Thanks to its hierarchical structure and delegated scheduling
mechanism, Oakestra can quickly resolve service scheduling re-
quests at the edge, which is a well-known NP-hard problem [12].
The root orchestrator first calculates the best-fit clusters for every
service request by broadly mapping the requirements to aggregated
statistics it received from the cluster orchestrators. Further, it of-
floads the service request to the cluster scheduler, which finds the
optimal deployment of the resources within the cluster. Since the
problem space is greatly reduced, frequent service (re)scheduling
is no longer costly using Oakestra.

We also design and implement Oakestra such that multiple
edge (or cloud) operators can contribute their resources (as dif-
ferent clusters) to shared infrastructure and retain administrative
control. For instance, we allow each cluster operator to incorporate
different scheduling policies within their clusters, such as latency,
fairness, etc. To support service interactions over resources across
different clusters (possibly behind NATs/firewalls), Net Manager in
the worker utilizes a novel semantic addressing scheme which can
dynamically (and transparently) adjust communication endpoints
in response to infrastructure changes, e.g., service migrations, re-
source failures, etc., ensuring uninterrupted service interactions.
Moreover, Oakestra is extremely lightweight which allows it to
operate effectively over highly compute-constrained resources with
minimal overhead. Our experiments over real edge infrastructures
reveals that Oakestra outperforms state-of-the-art solutions like
k8s and k3s. In comparison, we achieved a ≈ 10× reduction on
computing resources footprint and 10% application performance
improvement measured in terms of max FPS achieved by the same
AR pipeline (not shown due to space restrictions).

3 DEMONSTRATION
This demonstration will showcase the capabilities of Oakestra in
an edge-cloud infrastructure using a latency-critical AR application.
AR Application. The AR pipeline (see fig. 2) is composed of three
networked microservices [3]. Pre is the pre processing service that
takes live camera stream and scales down the image as per themodel
specification of rest of the pipeline. Obj performs object detection

Cluster Orchestrator

Node
Engine

Node
Engine

Cluster Orchestrator

Node
Engine

Node
Engine

Node
Engine Pre

Obj

Rec

Pre

Nvidia Jetson Raspberry Pi Cloud VM

Camera
&

Display

1-3

ObjPre

Rec
1-4

4

2-3

1-2

3-4

1-4

Edge Cluster

Cloud Cluster

Root Orchestrator

Figure 3: Demonstration Setup Steps
on each frame and outputs the bounding boxes coordinates. Rec
performs object recognition on the bounding boxes found by Obj
and labels them. It sends the output to the display which scales up
the output to original resolution. Each component of the pipeline
can be replicated in multiple instances and is GPU accelerated.
Oakestra Setup. We will create a two cluster infrastructure de-
ployment managed by Oakestra as shown in fig. 3. The edge cluster
will be composed of heterogeneous resources (Raspberry Pi’s and
Jetsons) on the demo table while the cloud cluster will have VMs in
a cloud datacenter. The root orchestrator will also be in the cloud,
albeit from a different cloud operator than cloud cluster to high-
light the multi-cloud operation. We will demonstrate (i) how to
deploy applications at the edge using Oakestra’s APIs, (ii) how
Oakestra handles sudden spikes in application load via resched-
ules/replications, and (iii) how Oakestra transparently handles
resource and service failures at the edge. Simultaneously, audi-
ence can observe the live performance of the application and the
operational load of the infrastructure.
Demonstration Design. In step 1 , we will deploy the AR ap-
plication using Oakestra’s web interface which will schedule its
microservices on edge resources. Additionally, we will deploy an-
other instance of Pre in the cloud such that both instances are
independentally operational in the infrastructure. In step 2 we
will scale the number of clients, thereby increasing the load on the
pipeline. As a consequence, Oakestra will scale-up the bottleneck
Obj instances in real-time – which will be evident from latency
reduction in the pipeline output. In step 3 we will demostrate
resilience of Oakestra by injecting node failures in edge cluster
– abruptly killing the Pre service, which will seamlessly re-route
client traffic to the instance in cloud cluster. In meantime, Oakestra
will re-deploy the failed Pre instance on an unused resource in the
edge cluster and will resume service operation at the edge. Finally,
in step 4 , we will kill the node hosting the only Rec service in-
stance which requires GPU for operation – resulting in loss of labels
in pipeline output. As a result, Oakestra will reschedule the failed
instance of Rec to the only available GPU node in edge cluster,
restoring optimal pipeline operation with minimal downtime.
Acknowledgements. This work is supported by EU Celtic project
Piccolo (C2019/2-2), Federal Ministry of Education and Research
of Germany (BMBF) project 6G-Life (16KISK002) and Bavarian
Ministry of Economic Affair project 6G Future Lab Bavaria.

Oakestra SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands

REFERENCES
[1] Hadeel Abdah, Joaão Paulo Barraca, and Rui L. Aguiar. 2019. QoS-Aware Service

Continuity in the Virtualized Edge. IEEE Access 7 (2019), 51570–51588. https:
//doi.org/10.1109/ACCESS.2019.2907457

[2] Brian Amento, Bharath Balasubramanian, Robert J. Hall, Kaustubh Joshi, Guey-
oung Jung, and K. Hal Purdy. 2016. FocusStack: Orchestrating Edge Clouds
Using Location-Based Focus of Attention. In 2016 IEEE/ACM Symposium on Edge
Computing (SEC). 179–191. https://doi.org/10.1109/SEC.2016.22

[3] Simon Bäurle and Nitinder Mohan. 2022. ComB: A Flexible, Application-
Oriented Benchmark for Edge Computing. In Proceedings of the 5th Interna-
tional Workshop on Edge Systems, Analytics and Networking (Rennes, France)
(EdgeSys ’22). Association for Computing Machinery, New York, NY, USA, 19–24.
https://doi.org/10.1145/3517206.3526269

[4] Sebastian Böhm and Guido Wirtz. 2021. Profiling Lightweight Container Plat-
forms: MicroK8s and K3s in Comparison to Kubernetes.. In ZEUS.

[5] Canonical. 2018. MicroK8s. Retrieved May 24, 2022 from https://microk8s.io
[6] CNCF. 2015. Kubernetes - Production-Grade Container Orchestration. Retrieved

May 24, 2022 from https://kubernetes.io
[7] CNCF. 2017. KubeEdge. Retrieved May 24, 2022 from https://kubeedge.io/en/
[8] CNCF. 2019. Lightweight Kubernetes | K3S. Retrieved May 24, 2022 from

https://k3s.io
[9] Lorenzo Corneo, Maximilian Eder, Nitinder Mohan, Aleksandr Zavodovski,

Suzan Bayhan, Walter Wong, Per Gunningberg, Jussi Kangasharju, and Jörg
Ott. 2021. Surrounded by the Clouds: A Comprehensive Cloud Reachability
Study. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW
’21). Association for Computing Machinery, New York, NY, USA, 295–304.
https://doi.org/10.1145/3442381.3449854

[10] Lorenzo Corneo, NitinderMohan, Aleksandr Zavodovski, WalterWong, Christian
Rohner, Per Gunningberg, and Jussi Kangasharju. 2021. (How Much) Can Edge
Computing Change Network Latency?. In 2021 IFIP Networking Conference (IFIP
Networking). 1–9. https://doi.org/10.23919/IFIPNetworking52078.2021.9472847

[11] Vittorio Cozzolino, Leonardo Tonetto, Nitinder Mohan, Aaron Yi Ding, and
Jorg Ott. 2022. Nimbus: Towards Latency-Energy Efficient Task Offloading
for AR Services. IEEE Transactions on Cloud Computing (2022), 1–1. https:
//doi.org/10.1109/TCC.2022.3146615

[12] Hongyan Cui, Yang Li, Xiaofei Liu, Nirwan Ansari, and Yunjie Liu. 2017. Cloud
service reliability modelling and optimal task scheduling. Iet Communications
(2017).

[13] The Khang Dang, Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Jörg
Ott, and Jussi Kangasharju. 2021. Cloudy with a Chance of Short RTTs: Analyz-
ing Cloud Connectivity in the Internet. In Proceedings of the 21st ACM Internet
Measurement Conference (Virtual Event) (IMC ’21). Association for Computing
Machinery, New York, NY, USA, 62–79. https://doi.org/10.1145/3487552.3487854

[14] Aaron Yi Ding, Ella Peltonen, Tobias Meuser, Atakan Aral, Christian Becker,
Schahram Dustdar, Thomas Hiessl, Dieter Kranzlmüller, Madhusanka Liyanage,
Setareh Maghsudi, Nitinder Mohan, Jörg Ott, Jan S. Rellermeyer, Stefan Schulte,
Henning Schulzrinne, Gürkan Solmaz, Sasu Tarkoma, Blesson Varghese, and Lars
Wolf. 2022. Roadmap for Edge AI: A Dagstuhl Perspective. SIGCOMM Comput.
Commun. Rev. 52, 1 (mar 2022), 28–33. https://doi.org/10.1145/3523230.3523235

[15] Eclipse. 2019. fog05 - The End-to-End Compute, Storage and Networking Virtu-
alisation solution. Retrieved May 24, 2022 from https://fog05.io/

[16] Eclipse. 2019. ioFog - Bring your own edge. Retrieved May 24, 2022 from
https://iofog.org/

[17] Kubermatic GmbH. 2016. Kubermatic. Retrieved May 24, 2022 from https:
//www.kubermatic.com/

[18] David Haja, Mark Szalay, Balazs Sonkoly, Gergely Pongracz, and Laszlo Toka.
2019. Sharpening kubernetes for the edge. In Proceedings of the ACM SIGCOMM
2019 Conference Posters and Demos. 136–137.

[19] Minsung Jang, Karsten Schwan, Ketan Bhardwaj, Ada Gavrilovska, and Adhyas
Avasthi. 2014. Personal clouds: Sharing and integrating networked resources to
enhance end user experiences. In IEEE INFOCOM 2014.

[20] Andrew Jeffery, Heidi Howard, and Richard Mortier. 2021. Rearchitecting Kuber-
netes for the Edge. 4th ACM EdgeSys (2021).

[21] Peng Liu, DaleWillis, and Suman Banerjee. 2016. ParaDrop: Enabling Lightweight
Multi-tenancy at the Network’s Extreme Edge. In IEEE/ACM SEC.

[22] Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Suzan Bayhan, Walter
Wong, and Jussi Kangasharju. 2020. Pruning Edge Research with Latency Shears.
In Proceedings of the 19th ACMWorkshop on Hot Topics in Networks (Virtual Event,
USA) (HotNets ’20). Association for Computing Machinery, New York, NY, USA,
182–189. https://doi.org/10.1145/3422604.3425943

[23] Nitinder Mohan and Jussi Kangasharju. 2016. Edge-Fog cloud: A distributed
cloud for Internet of Things computations. In 2016 Cloudification of the Internet
of Things (CIoT). 1–6. https://doi.org/10.1109/CIOT.2016.7872914

[24] Nitinder Mohan and Jussi Kangasharju. 2018. Placing it right!: optimizing energy,
processing, and transport in Edge-Fog clouds. Annals of Telecommunications 73,
7 (2018), 463–474. https://doi.org/10.1007/s12243-018-0649-0

[25] Nitinder Mohan, Aleksandr Zavodovski, Pengyuan Zhou, and Jussi Kangasharju.
2018. Anveshak: Placing Edge Servers In The Wild. In Proceedings of the 2018
Workshop on Mobile Edge Communications (Budapest, Hungary) (MECOMM’18).
Association for Computing Machinery, New York, NY, USA, 7–12. https://doi.
org/10.1145/3229556.3229560

[26] Jinke Ren, Guanding Yu, Yinghui He, and Geoffrey Ye Li. 2019. Collaborative cloud
and edge computing for latency minimization. IEEE Transactions on Vehicular
Technology 68, 5 (2019), 5031–5044.

[27] Sergej Svorobej, Malika Bendechache, Frank Griesinger, and Jörg Domaschka.
2020. Orchestration from the Cloud to the Edge. The Cloud-to-Thing Continuum
(2020), 61–77.

[28] Aleksandr Zavodovski, Nitinder Mohan, Suzan Bayhan, Walter Wong, and Jussi
Kangasharju. 2018. ICON: Intelligent Container Overlays. In Proceedings of the
17th ACM Workshop on Hot Topics in Networks (Redmond, WA, USA) (HotNets
’18). Association for Computing Machinery, New York, NY, USA, 15–21. https:
//doi.org/10.1145/3286062.3286065

