
Oakestra: A Lightweight Hierarchical Orchestration Framework
for Edge Computing

Giovanni Bartolomeo♮ Mehdi Yosofie Simon Bäurle Oliver Haluszczynski
Nitinder Mohan♮ Jörg Ott

Technical University of Munich, Germany

{firstname.lastname@tum.de}
♮ Corresponding Authors

Abstract
Edge computing seeks to enable applications with strict la-
tency requirements by utilizing resources deployed in diverse,
dynamic, and possibly constrained environments closer to
the users. Existing state-of-the-art orchestration frameworks
(e.g. Kubernetes) perform poorly at the edge since they were
designed for reliable, low latency, high bandwidth cloud envi-
ronments. We present Oakestra, a hierarchical, lightweight,
flexible, and scalable orchestration framework for edge com-
puting. Through its novel federated three-tier resource man-
agement, delegated task scheduling, and semantic overlay
networking, Oakestra can flexibly consolidate multiple in-
frastructure providers and support applications over dynamic
variations at the edge. Our comprehensive evaluation against
the state-of-the-art demonstrates the significant benefits of
Oakestra as it achieves approximately tenfold reduction in
resource usage through reduced management overhead and
10% application performance improvement due to lightweight
operation over constrained hardware.

1 Introduction

Within almost a decade since its inception, edge comput-
ing has found a wide range of use cases in industry and re-
search, especially for supporting latency-critical services like
AR/VR [24], live video analytics [14], etc. [46]. However,
despite significant interest, there have only been a handful of
real-world demonstrations of edge so far [49]. Reasons for this
are manifold and may include, on the technical side, the fol-
lowing. Firstly, resources at the edge are far less capable and
more heterogeneous than datacenters [61] – usually of smaller
form factor with specialized hardware, e.g., Intel NUCs [36],
Coral AI board [20]), Jetson Xavier [50], Raspberry Pis, etc.
Many such devices are designed to be deployed in proximity
to the users utilizing unreliable (wireless) networks with lim-
ited bandwidth and high latency as primary communication
mediums [64]. Moreover, the benefits of edge [47,68] are only
apparent with the dense availability of computing resources –
requiring significant investment and planning [21, 46].

Secondly, the majority of popularly used orchestration
frameworks, e.g., Kubernetes [34], K3s [29], KubeFed [35],
etc., are off-shoot branches of solutions that were inherently
designed to perform well in managed datacenter networks.
Such frameworks make strong assumptions about the underly-
ing infrastructure’s (especially the network’s) consistent relia-
bility and reachability, which does not necessarily hold at the
edge where resources are more dispersed. For example, recent
investigations into Kubernetes’ operations uncovered that its
reliance on maintaining strong consistency in the datastore via
etcd along with its limited scalability results in severe avail-
ability and efficiency issues in edge-like environments [37].
Moreover, the core components of such frameworks incor-
porate many heavyweight operations – limiting their use on
constrained hardware. Furthermore, almost none of the exist-
ing solutions can currently support the edge’s heterogeneity
in hardware, networking, and resource availability.

In this work, we present Oakestra, a flexible, hierarchical
orchestration framework that overcomes the many challenges
just mentioned. Conceptually, Oakestra allows multiple op-
erators over vast geographical regions to contribute their re-
sources to a federated infrastructure – reducing the investment
to achieve a dense computing fabric at the edge. Furthermore,
Oakestra’s implementation is lightweight and extensible, al-
lowing it to manage effectively constrained and heterogeneous
edge infrastructures. Specifically, our contributions are:
(1) We consolidate edge infrastructures in a logical three-tier
hierarchy. With a root orchestrator managing many resource
clusters, each controlled by a cluster orchestrator, we enable
infrastructure federation. The cluster orchestrator exercises
local fine-grained control but only sends aggregated cluster
usage statistics to the root (§3). By design, Oakestra hides
the internal infrastructure details within each cluster, allow-
ing many providers to participate without exposing internal
configurations. Application providers can deploy services
at the edge by specifying high-level constraints (hardware,
latency, geography) at the root. Oakestra uses a delegated
scheduling mechanism that decouples the task placement by
only making coarse-grained cluster choices at the root and

leaving fine-grained resource placement to the clusters.

(2) We design a novel semantic overlay network that trans-
parently enables edge-oriented load balancing policies (e.g.,
connect to the closest instance), directly addressable using
semantically-capable IPv4 addresses and hostnames (§3.4).
This supports the portability of cloud-native applications, en-
suring flexibility for application developers to optimize the
service-to-service interactions at the edge. The overlay also
allows Oakestra to dynamically adjust communication end-
points in response to infrastructure changes, e.g., migrations,
failures, etc., ensuring uninterrupted service interactions.

(3) Oakestra’s lightweight and modular implementation is
compatible with most popular cloud technologies and allows
developers to extend internal components, e.g., schedulers,
without much development overhead (§5). Our extensive eval-
uation in both high-performance computing and edge infras-
tructures demonstrates Oakestra’s capabilities as it consis-
tently (and significantly) outperforms the popular produc-
tion frameworks (e.g., Kubernetes and its derivatives). Our
results show up to 10× lower CPU overhead, 60% reduc-
tion in service deployment time, and 10% application per-
formance improvement. Under heavy loads, Oakestra re-
duces resource utilization by ≈ 20% compared to its clos-
est competitor, K3s. Oakestra is an open-source project
(https://www.oakestra.io/), and all its components are
available at https://github.com/oakestra.

2 Background and Related Work

Kubernetes [34] has emerged as the most popular orchestra-
tion system in production, used by ≈ 59% of all respondents
in a recent survey [23], and has been touted by many as the
primary solution for edge computing. It decouples the exe-
cution runtime of the applications (nodes) from the global
cluster decisions (control plane). Its smallest deployable units
of computing are the Pods, which are a group of containerized
services. The nodes embed the execution runtime of the pods,
as well as the networking e monitoring components of the
platform. The control plane exposes the APIs for developers
and external tools, monitors and synchronizes the nodes, and
reacts to cluster events, such as deployments, scaling, and
failures. Kubernetes is designed for datacenter environments,
and it assumes the nodes to be high-end managed resources
interconnected by reliable low-latency networks. The plat-
form guarantees strong consistency of the cluster status and
resources in replicated control plane setup via the distributed
key-value store called etcd. Recent studies have found that the
strong consistency requirements of etcd are its primary limi-
tation when ported to heterogeneous and diverse edge infras-
tructures. This has a noticeable impact on scalability when it
comes to constrained resources that can slow down the entire
infrastructure [37]. Network partitioning and multi-clustering
still remain critical even in Kubernetes federation [35] as

shown in [45]. In particular, distributed geographical areas
lack cooperation and awareness of the remaining infrastruc-
ture. The inter-cluster communication then requires additional
tools like Submariner [9] that requires global state transfer
synchronization and prevents scalability. Lightweight distri-
butions of Kubernetes such as KubeEdge [19], K3s [29], and
Microk8s [43] either inherit the strong assumptions of ku-
bernetes [15] or are meant to perform better on small scale
clusters as later shown in our evaluation. In general, while
extending Kubernetes or rearchitecting its components is a
viable option, we argue that the effort for largely redesigning
numerous of the core components would be substantial and
instead re-formulate some of its base assumptions. Therefore,
Oakestra pursues a different approach, built ground-up with
the edge requirements in mind, it offers a familiar environment
for current Kubernetes developers while providing flexibility
to exploit the proximity to their clients and geo-distributed
multi-owner infrastructure deployment. Oakestra does not
aim at superseding the feature set of Kubernetes but rather
fills the gap identified in those contexts where Kubernetes
does not fit. Our ongoing work explores the integration of
Kubernetes-based cloud clusters.

In the literature, we can also find other systems that have
explored effective edge orchestration natively. CloudPath [48]
envisions multi-tier on-path computing for deploying state-
less functions closer to the clients. HeteroEdge [69] or
SpanEdge [58] cater specifically towards streaming appli-
cations, FogLamp [65] focuses on data management and Vir-
tualEdge [42] only considers edge servers within cellular
networks. From the task scheduling perspective, we might
relate to different hierarchical scheduler approaches that dis-
tribute tasks on a cloud-edge continuum [12,18,28,38]. How-
ever, while these solutions focus on service scheduling, in
our work, we must integrate the scheduling problem in a
comprehensive orchestration framework offering both ser-
vice and resource management. The work closest to ours is
OneEdge [60], as it offers a hybrid two-tier control plane for
managing geo-distributed edge infrastructures. However, we
consider Oakestra to be a superset of OneEdge as the former
is a general-purpose modular framework that allows develop-
ers to express geographic (and other) management constraints
as scheduler plugins. We demonstrate such extensibility of
Oakestra through an LDP scheduler plugin (§3.2) that op-
timizes on geographical and latency constraints – similar to
OneEdge. Therefore, integration remains a possibility which
we leave out for future work.

3 Oakestra Overview

Previous research has shown that both service deployment
and resource management in distributed edge infrastructures
are non-trivial problems, primarily due to the heterogeneity
and dynamicity of the environment [16, 41, 66]. Simultane-
ously, the application providers are likely to deploy multiple

https://www.oakestra.io/
https://github.com/oakestra

Root Scheduler
System
Manager

Root Database

Root Orchestrator

Cluster
Manager

Cluster Scheduler

Cluster Database

Node
Engine

ARM Worker 1

Service
Manager

Service
Manager

W
eb

/C
on

so
le

1

Net
Manager

Execution
Runtime

Node
Engine

x86

Net
Manager

Worker k

2

3

4

6

5

8

910

Inter-Cluster Control Link

Logical Link
Overlay Network - Data Link

Execution
Runtime

Intra-Cluster Control Link

Cluster Orchestrator

Worker
1

Worker m

x86 x86

. . .Worker
2

ARM

7

Cluster
Orchestrator

Cluster n

. . .

. .
. .

.

11 12

Service +
Deployment Descriptor

Cluster 1 Cluster 2

Figure 1: Oakestra Architecture and Workflow.

instances of their services across different edge clusters to
have them close to their clients, both in terms of geographic
distance and network latency [59]. Additionally, solutions
at the edge must remain logically compatible with prevalent
cloud techniques such that both existing and novel applica-
tions can coexist in edge and cloud realms, thereby providing
scalability and flexibility. These and other unique operational
viewpoints at the edge impose several design challenges for
Oakestra, which we enlist below.

(1) Oakestra must support the infrastructure-at-scale – al-
lowing scaling from thousands to millions of distributed nodes
without management overheads. The framework should sup-
port a federated heterogeneous infrastructure deployed across
geography and controlled by one or more administrative enti-
ties and topologies. Furthermore, the framework should allow
(a) developers to utilize edge resources regardless of owner-
ship and (b) infrastructure providers to retain management
control over their resources.

(2) Extending the infrastructure to the edge of the network
requires applications to be able to exploit the proximity with
clients. The platform must envision a way for inter-connected
microservices to seamlessly communicate and balance the
traffic with nearby instances. Therefore, the framework must
allow developers to describe the application’s requirements
with fine-grained SLA primitives (such as specialized hard-
ware requirements, geographical placement, etc.), which must
be respected throughout the application lifecycle.

(3) The orchestrator must consider the most up-to-date
constraints of edge servers and must adapt to changes in con-
ditions without impacting the applications. Each edge device
can contribute with diversified hypervisors, drivers, hardware
availability, network, and capacity. The system must abstract
the management complexity and autonomously find a com-
patible node for the deployment issued by the developer.

3.1 System Architecture

Oakestra is a hierarchical orchestration framework for en-
abling running edge computing applications on heterogeneous
resources (Figure 1). Instead of the flat management (inherent
to most orchestration solutions [10,19,29,31,35]), Oakestra
organizes the infrastructure into distinct clusters (see clusters
1 and 2). We leave the definition of “cluster” purposefully
abstract and up to the liking of operators since Oakestra
allows multiple edge operators (e.g., ISPs, cloud operators,
etc.) to contribute their local deployments towards a shared
infrastructure as separate clusters with independent admin-
istrative control. Each individual provider then deploys sev-
eral clusters to segregate its resources, e.g., geographically.
The fine-grained control of resources (workers) within a clus-
ter is administered by the cluster orchestrator (operated by
the provider), while root orchestrator coarsely controls the
global infrastructure. Oakestra can also mimic the single
master frameworks (like Kubernetes) with both root and clus-
ter orchestrators deployed on the same machine, albeit with
significant performance benefits to the state-of-the-art (§5).
The resource and service management responsibilities are
separated into independent components, system manager
and service manager (§3.2). We carefully design and im-
plement Oakestra as a modular and extensible framework –
allowing the possibility to swap technologies and/or add new
features as the requirements of edge computing evolve in the
future (§5). Oakestra comprises of three main entities – root
orchestrator, cluster orchestrator, and worker.

The Root Orchestrator is Oakestra’s centralized control
plane (analogous to Kubernetes’s “control-plane” [10]) and
is responsible for managing resource clusters. However, as
we explain in §3.2, the root only provides (i) coarse high-
level control and (ii) interactions across multiple clusters, as
fine-grained control is retained within the cluster boundary.
Regardless, we envision the root to be deployed on a machine

reachable from all clusters (in a widescale deployment, e.g.,
in the cloud). While the root orchestrator may appear to be
a central point-of-failure initially, the context separation into
fine- and coarse-grained management responsibilities across
hierarchy allows Oakestra to continue its operations if the
root fails and restarts (see Fault Tolerance in §3.5).

To deploy applications, developers submit the code along
with an SLA descriptor to the system manager. The SLA
includes high-level operational requirements and constraints
for service execution at the edge, e.g., virtualization, required
hardware, geolocation, etc. (see §3.2). The system manager
notifies the service manager of the new deployment re-
quest (step 1), and contacts the root scheduler (step 2)
to calculate a priority list of clusters (based on aggregate
information) to deploy the application. As such, Oakestra
follows a multi-step delegated service scheduling approach
as the root offloads the fine-grained scheduling operation to
selected clusters schedulers (details in §3.2). The system
manager is also responsible for registering new clusters and
coordinating the control information.

The Cluster Orchestrator is a logical twin of the root but
with management responsibility restricted to resources within
the local cluster. An infrastructure provider registering its
resources as a cluster with the root assigns the orchestrator
role to a machine that is ideally reachable by all workers. The
cluster manager periodically updates the root with aggre-
gated statistics of overall cluster utilization and health/QoS
of the deployed services (step 5 , and 6) via HTTPS-based
inter-cluster control link in a push-based manner (implemen-
tation details in §5). Note that the cluster orchestrator with-
holds minute information and retains majority administrative
control of its member workers. For example, if the cluster
orchestrator receives a delegated scheduling request from the
root (step 3 and 4), it calculates the optimal resource selec-
tion considering the up-to-date availability, utilization, and
capability reported by the attached workers. The Oakestra
scheduler is designed to be modular and supports several
different scheduling algorithms as language-agnostic plugins.

Worker Nodes are edge servers in clusters responsible for
executing services. Each worker has a distinct capacity and
capability, e.g., CPU, GPU, disk, RAM, etc., which it reports
to the local cluster orchestrator at registration. If a worker’s
capacity and capability match the service’s SLA constraints,
the cluster orchestrator instructs the worker’s NodeEngine to
deploy the service 7 , triggering a runtime (and network)
instantiation 8 and service execution 9 . Each worker peri-
odically reports its utilization, health of operational services,
and (potential) SLA default alarms to its cluster orchestra-
tor via an MQTT-based intra-cluster control link. Note that
for interconnecting microservices deployed across clusters,
Oakestra does not require workers to have public IP ad-
dresses as the net manager natively supports both direct 11

and tunneled 12 communication (see §3.4 for details).

1-45 3-15 5-9 9-5 15-3 45-1
Cluster-Worker ratio

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

S
ch

ed
ul

in
g

(m
s)

root cluster

Figure 2: Scheduling time for different cluster sizes.

Why hierarchical orchestration? To understand if a hierarchi-
cal management design is inherently better for scalability at
the edge, We created an experimental setup with 45 worker
node VMs in a compute cluster and configured the orchestra-
tion with increasingly different cluster sizes. Starting from
a single cluster with 45 nodes, we gradually increased the
number of clusters up to 45 with only one worker. For each
split, we performed 100 deployments and recorded the time
the root and cluster scheduler took for the scheduling decision
(see fig. 2). Note that the corner cases of the configuration, i.e.,
one cluster with 45 workers (1−45) and 45 clusters with one
worker each (45−1), represent the flat orchestration design
used in majority state-of-the-art, e.g., in Kubernetes-based
solutions. The results indicate that decoupled orchestration
reduces scheduling time, primarily since the infrastructure
search space is a smaller subset. Optimal performance is
achieved when the workers are somewhat balanced across
multiple clusters in the hierarchy, and the minimum is around
nine clusters with five workers. It is apparent (from the 3−15
split) that using a two-layer hierarchy can be advantageous,
especially for wide-scale infrastructure.

3.2 Resource and Service Management

Resource Management. As discussed in §3.1, edge resources
in Oakestra are deployed in distinct clusters, with Ri = {Ri

1,
Ri

2, . . . , Ri
n, Ri

CO} resources in the ith cluster. Here, Ri
CO is

the cluster orchestrator of i-th cluster. Each resource Ri
n peri-

odically pushes its current utilization (U i
n) and other charac-

teristics (e.g. location) to Ri
CO with update frequency λ(Ri

n)
over the intra-cluster communication channel. At each update,
Ri

CO calculates the available capacity of Ri
n by correlating U i

n
to the maximum capacity Ci

n reported at registration. λ(Ri
n)

can be dynamically tuned for each Ri
n to balance between

network overhead and the freshness of the information. We
leave the exploration and impact of λ(Ri

n) algorithms and the
use of techniques such as AoI [62] to future work. Similar to
intra-cluster, the update messages over inter-cluster links are
also push-based. Each cluster orchestrator periodically sends
the aggregate distribution of available current capacity, i.e.
∪(Ai) = ⟨∑(Ai), µ(Ai), σ(Ai)⟩ where Ai = {Ai

1, Ai
2, . . ., Ai

n}
to the root. The aggregation allows different operators to (i)

c o n s t r a i n t s : [{
m i c r o s e r v i c e _ i d : { t ype : number } ,
p r o p e r t i e s : [{

memory : { t ype : i n t e g e r } ,
vcpus : { t ype : i n t e g e r } ,
vgpus : { t ype : i n t e g e r } ,
v t p u s : { t ype : i n t e g e r } ,
b a n d w i d t h _ i n : { t ype : i n t e g e r } ,
l a t e n c y : { t ype : number } ,
a r e a : { t ype : s t r i n g } ,
l o c a t i o n : { t ype : s t r i n g } ,
t h r e s h o l d : { t ype : number } ,
r i g i d n e s s : { t ype : number } ,
c o n v e r g e n c e _ t i m e : { t ype : i n t e g e r } ,
v i r t u a l i z a t i o n : { t ype : s t r i n g } ,
. . . }] ,

. . . }]

Schema 1: Service Requirement Descriptor.

participate in the federated infrastructure while obscuring the
minute details of their resources and (ii) freely scale up/down
their cluster density without involving the root.
Service Deployment & Scheduling. Developers can deploy
their (standalone or multi-microservice) applications by spec-
ifying high-level QoS requirements within the SLA descrip-
tion. The deployment descriptor used for submitting applica-
tions to Oakestra is composed of (i) a description of each
microservice of the application (name, namespace, image,
etc.) along with communication interlinks, and (ii) a service
level agreement (SLA) describing the constraints that the plat-
form must respect for each one of them. Schema 1 shows
a fragment of the high-level SLA description supported by
our framework. In addition to operational requirements al-
ready prevalent in cloud environments, such as processing
performance, networking requirements, virtualization needs,
etc., the schema allows developers to specify edge-specific
restrictions, e.g., geographical location, specialized hardware,
etc. Additionally, developers can fine-tune the precision of
scheduling heuristics by enforcing convergence time and deci-
sion rigidness metrics. Convergence time specifies the maxi-
mum allowed time within which the scheduler should find the
suitable edge server that supports the SLA requirements of the
service, and rigidness defines the sensitivity for re-triggering
service scheduling in case the selected resource violates the
SLA (due to environment/infrastructure changes).

As described earlier, Oakestra follows a two-step dele-
gated scheduling mechanism. Specifically, upon receiving
a service deployment request from the developer, the root
scheduler matches the SLA constraints to the current ca-
pacity of each cluster and calculates a priority list of best-fit
clusters based on the latest aggregate cluster usage distribu-
tion. The root then offloads the deployment request (including
SLA and the service) iteratively to cluster orchestrator(s) with
decreasing priority. Upon receiving the request, the cluster
scheduler calculates the optimal service placement within
its cluster, leveraging the available schedulers (see §3.2.1).
Note that we design Oakestra’s scheduling logic to be
language-agnostic – allowing developers/researchers to im-
plement custom algorithms as plugins.

Algorithm 1: Resource-Only Match
Input: An : Information about worker n.

Qτp,i : Requirements of i-th task of p-th service.
f (An,Qτp,i): Resource selection strategy.

Output: Best worker W to run τp,i.

// Resource selection strategy examples:

// f (An,Qτp,i) = ∗argmaxn
[
(Acpu

n −Qcpu
τp,i)+(Amem

n −Qmem
τp,i

)

// ∧Qvirt
τp,i
∈ Avirt

n
]

// f (An,Qτp,i) = ∗ f irstn
[
Qcpu

τp,i ≤ Acpu
n ∧ Qmem

τp,i
≤ Amem

n

// ∧Qvirt
τp,i
∈ Avirt

n
]

1 W ← f (An,Qτp,i)

2 return W

Oakestra’s delegated scheduling significantly reduces the
search space of the multi-objective task placement problem by
considering a subset of resources at each step. In case all mi-
croservices of an application cannot be placed within the same
cluster, the root scheduler iteratively requests other clusters in
the priority list for pending deployment(s). The worker node
engine also keeps track of the deployed services through
their lifecycle (see §3.3). In case of failures (resource – if the
last update from a worker exceeds a threshold; service – if
a worker raises an alarm), the cluster orchestrator marks all
affected services as failed and attempts to re-deploy them on
another suitable resource within the same cluster. If unsuc-
cessful, the rescheduling request is propagated to the root for
system-wide scheduling. Similarly, the cluster orchestrator
can trigger re-deployments if it observes any SLA violations
(exceeding specified rigidity).

3.2.1 Service Schedulers in Oakestra

Let S = {s1,s2, . . . ,s|S|} denote the set of services requested
to be deployed by the developers at the root. Each service
sp ∈ S can be composed of n individual microservices or tasks,
i.e. sp = {τp,1,τp,2, . . . ,τp,n} where τp,i denotes i-th task of
p-th service. Each task τp,i requires a certain capacity (CPU,
GPU, memory), denoted by Qτp,i . Other considerations like
geographical location or virtualization technology, specified
by the developer in the SLA, are also part of Qτp,i . The task of
the scheduling components (in both root and cluster) is to find
a suitable resource in the infrastructure that supports the re-
quirements in Qτp,i . In this work, we propose and incorporate
two different scheduling approaches.

(1) Resource-Only Match (ROM): As the name suggests, in
ROM, the cluster scheduler finds a suitable resource that satis-
fies the service’s capacity requirements (see Algorithm 1).
The scheduling approach is analogous to greedy-fit and
knapsack-based solutions popularly used for placing VMs
on cloud servers in datacenters [63].

(2) Latency & Distance Aware Placement (LDP): LDP
(shown in Algorithm 2) builds on the ROM scheduler but
additionally considers latency and geographical distance con-

Algorithm 2: Latency & Distance Aware Placement
Input: An : Information about worker n.

Qτp,i : Requirements of i-th task of p-th service.
Output: Best workers W to run τp,i.

1 W ←{n ∈ [1, |A|] |Acpu
n ≥ Qcpu

τp,i ∧Amem
n ≥ Qmem

τp,i
∧ Qvirt

τp,i
∈ Avirt

n }
2 if |Qs2s

τp,i
| ≥ 1 then

3 for Q j in Qs2s
τp,i

do
4 t← Qtrg

j

5 W ←{n ∈W |distgc(A
geo
n ,Ageo

t)≤ Qgeo_thr
j ∧

disteuc(Aviv
n ,Aviv

t)≤ Qviv_thr
j }

6 end
7 end
8 if |Qs2u

τp,i
| ≥ 1 then

9 for Qk in Qs2u
τp,i

do
10 u← Qlat_trg

k
11 rtts←{rtti,u | i ∈ rnd(W),rtti,u = ping(i,u)}
12 vivaldiNet←{Aviv

n |n ∈ [1, |A|]}
13 U ← trilateration(rtts,vivaldiNet)

14 W ←{n ∈W |distgc(A
geo
n ,Qgeo_trg

k)≤ Qgeo_thr
k ∧

disteuc(Aviv
n ,U)≤ Qlat_thr

k }
15 end
16 end
17 return W

straints for service placement. Since edge applications can be
composed of multiple microservices that can either interact
with each other (in a chain-like fashion) or directly with end
users/devices, we allow the application provider to specify
constraints for both service-to-service (S2S) and service-to-
user (S2U) links. The root scheduler first filters unsuitable
clusters by comparing their resource constraints along with
approximate geographical operation zones to the SLA require-
ments. Within each cluster, the algorithm first creates a list of
candidate workers that satisfy the resource constraints. Then,
for all S2S constraints Qs2s

τp,i
, the algorithm filters out work-

ers that exceed the specified distance Qgeo_thr
j and latency

thresholds Qviv_thr
j to the target service t = Qtrg

j . LDP esti-
mates geographic distance as the great circle distance (distgc)
between the geographic location of worker n (Ageo

n) and the
location of the target service Ageo

t . The approximated latency
is the Euclidean distance (disteuc) between the location of
worker n (Aviv

n) and the location of the target service Aviv
t in

the Vivaldi network [25]. Vivaldi is a network coordinate
system embedding networked nodes into a d-dimensional
coordinate system such that the Euclidean distance of two
nodes approximates their round-trip time. If the developer has
specified any S2U constraints Qs2u

τp,i
, LDP measures the round-

trip times (rtts) to the target as Qlat_trg
k from a set of random

workers in the cluster (i ∈ rnd(W)). The measurements ap-
proximate the user’s position within the Vivaldi network via
trilateration. Following that, LDP filters out workers that ex-
ceed the distance threshold Qgeo_thr

k to Qgeo_trg
k or the latency

threshold Qlat_thr
k to the approximated user position U .

Registered Requested Cluster
Scheduled

Worker
Scheduled

Running

Terminated

Failed

Figure 3: Lifecycle of a service’s instance.

3.3 Application Lifecycle
In Oakestra an application is composed of multiple ser-
vices. Each service, in turn, is composed of multiple instances.
Oakestra keeps track of the instances deployed in the plat-
form through a lifecycle state machine (fig. 3). At any point
in time, an instance can have one of the following states.
Registered: The developer has submitted an application and
its SLA (shown in fig. 1). The service manager in the root
saved the service SLA and generated the instance metadata.
Requested: After receiving the deployment command, the
instance is sent to the root scheduler, and the system manager
awaits a suitable cluster. When there is no cluster able to
guarantee the SLA, the deployment cannot be carried out.
Cluster Scheduled: The root scheduler designated a suit-
able cluster. The instance SLA is sent to the corresponding
cluster orchestrator. The cluster orchestrator is now waiting
for the cluster’s scheduler decision. If no worker node is ca-
pable of hosting the instance, the request is sent back to the
root in Requested status.
Worker Scheduled: The cluster scheduler finds a suitable
worker node. The instance binaries (or image download de-
tails) are fetched from the root and transferred to the selected
worker node while the ports for networking are allocated.
Running: The instance is operational as it satisfies the SLA
constraints. The worker periodically tracks the current QoS
and relays it to the cluster orchestrator along with current
utilization in periodic heartbeat update messages.
Terminated: The service is no longer operational due to an
explicit terminate command from the cluster orchestrator
(issued by the developer at the root). Alternatively, the service
gracefully finishes its execution and terminates.
Failed: The service execution has stopped with unexpected
exit status. A service “fails” if the worker node explicitly
reports this state to the cluster orchestrator as a failure alarm
or if the node fails. A resource is considered “failed” if it has
not sent a heartbeat for longer than a pre-defined threshold.

3.4 Service Communication
Supporting intra-service (and service-to-user) networking at
the edge can be challenging since (i) infrastructures are sus-
ceptible to dynamic changes, (ii) application deployment is

ServiceA
Instance 1

Worker 1

ServiceB
Instance 1

Worker 2
Tunneli

mDNS

ServiceN namespace

NetManager

ServiceA
namespace

ServiceA
Instance 1

execution runtime

Tu
nn

el
k

Tu
nn

el
1Pr
ox

yT
U

N

Semantic communication Address translation

Addr. Conversion Table

to 172.30.0.1

ServiceA:
RR IP 172.30.1.2
Closest IP 172.30.1.3
Instance 1 IP 172.30.1.1
...
ServiceB:
RR IP 172.30.0.2
Closest IP 172.30.0.3
Instance 1 IP 172.30.0.1
...

Figure 4: Service communication across edge servers.

fluid to remain close to clients [67], and (iii) several service
instances can coexist simultaneously to achieve broader cov-
erage, therefore addressing and balancing must dynamically
adapt to the service placement. Moreover, it is impractical
to presume that edge servers from multiple participating in-
frastructure operators can interact over a common/public net-
work – an assumption implicit in the majority of existing
solutions [29, 34, 43]. Oakestra includes a component called
NetManager that enables: (a) dynamic routing policies trans-
parently enforced via semantic service addressing to support
load balancing catering to edge environments (§3.4.1) and
(b) transport layer packet tunneling to interconnect services
operating on resources with limited accessibility (§3.4.2).
Oakestra separates the bulk of data-plane complexity from

the control-plane operations at the worker level. Particularly,
the framework utilizes the branches in the multi-tier edge
hierarchy only for core control-plane information propaga-
tion (e.g., routing updates, service/hardware utilization, and
failures, etc.) and designates data-plane communication man-
agement to leaf workers using the NetManager component.
Figure 4 shows the cross-section of NetManager with com-
munication between services A and B deployed on workers
1 and 2, respectively. The proxyTUN actively maintains and
dynamically adjusts endpoints of the tunneled connections
to adapt to infrastructure changes, ensuring uninterrupted
communication between services. Arguably, the proposed ap-
proach resembles some sidecar proxy solutions like Istio [3].
While the set of proposed functionalities might be similar,
the NetManager does not need to deploy a sidecar along with
each deployed application. While the design of solutions like
Istio fits the abundance of resources in the cloud context, we
propose a lightweight approach with a worker-level proxy
used by all the applications, like the native Kubernetes net-
work but featuring additional balancing flexibility and site-to-
site tunneling out-of-the-box.

3.4.1 Service Naming and Addressing

Drawing inspiration from semantic routing [39], a serviceIP
addresses all the instances of the service according to different

balancing policies (e.g. round-robin, closest, etc.). For exam-
ple, in fig. 4, worker 1 maintains the ServiceA’s closest and
round-robin serviceIPs – allowing services to select bal-
anced instances through IP addresses. Note that the serviceIP
is different from the host IP address as the former is ephemeral
and addresses service instances (similar to ClusterIP in Kuber-
netes [34]). When receiving a packet to an address belonging
to the load-balanced serviceIP, the ProxyTUN uses the con-
version table to get the corresponding Instance IP. If no
conversion entry is found, the NetManager registers an in-
terest in that route and enquires the cluster component (see
10 in fig. 1). If the cluster orchestrator does not contain the
information, the interest registration is propagated to the root.
The root either knows the service route or the service does
not exist at all, and no route can be propagated. The interest
registration also allows the worker to receive future updates
regarding the route. When a route is not used, the conversion
entry is erased, and the interest is deregistered.

If properly configured, services can use DNS-based naming
schemes which resolve to a serviceIP using a mDNS [57]. We
envision a service naming schema that reflects the hierarchy
<instance_number>.<routing_policy>.<service_
name>.<service_namespace>.<app_name>.<app_
namespace>. The app name and namespace portion of the
domain is provided by the developer to uniquely address the
application (e.g. videoAnalytics.org). The service name and
namespace address different microservices in the application
(e.g. ServiceA.default, ServiceB.default, etc.) while the
instance number uniquely distinguishes individual service
replicas. In case the developer does not care about connecting
to a specific instance of the service, <instance_number>
can be set to “any”. The unique aspect of the proposed service
naming is the routing_policy, as it allows developers
to offload connection endpoint selection to Oakestra
based on the current deployment state. For example, the
“closest” policy resolves to serviceIP address representing
the nearest service instance while “round-robin” balances
connection load across multiple instances. Following the
example of fig. 4, suppose ServiceA must send a request to
the closest instance of ServiceB. The request can either be
addressed using the semantic IPv4 address representing the
closest routing policy, therefore 172.30.0.3, or the name
any.closest.ServiceB.default.videoAnalytics.org.
The ProxyTUN component will convert the given semantic
address to and instance address that represents the chosen
instance accordingly to the balancing policy. It will then
proceed tunneling the packet towards the destination.

The reachability of the services managed by Oakestra
from external users can be achieved with standard DNS and
API getaway solutions. For future extensions of this work, we
are investigating techniques that can support client mobility
and dynamicity of the endpoints for first-mile computation
and fast handovers. In fact, traditional cloud solutions in edge
contexts lead to frequent DNS resolutions and a lack of sup-

port for the discovery of services in close user proximity.

3.4.2 Connection proxying and tunneling

Oakestra enables inter-service communication across work-
ers in different clusters with limited available ports (e.g. be-
hind firewalls) through UDP tunneling. We can again refer
to the example shown in fig. 4, where ServiceA on worker
1 needs to communicate with ServiceB on worker 2. Every
packet sent from ServiceA to ServiceB is handled by the prox-
yTun attached to a virtual bridge in worker 1. The proxyTUN
component resolves the serviceIP of the destination ServiceB,
selecting the Instance IP accordingly to the balancing policy
enforced. If no resolution entry is found, the worker node
subscribes to the updates regarding this route to the cluster
orchestrator. The resolution entries for a service include a list
of the available service instances, their respective IP addresses
assigned from each local worker’s subnetwork (Instance IPs),
and each one of the destination worker’s address and port that
should be used for the tunneling. The tunneling is performed
at L4 using UDP. The L4 implementation allows to transpar-
ently support all transport protocols (TCP/UDP/QUIC) out
of the box. The only requirement in order to support nodes
behind NATs and firewalls is to provide a port for the site-
to-site tunneling. An open tunnel (i, j) connecting node i to
node j for performance reasons is recycled for all the traffic
of all the services communicating with instances belonging
to those workers. Therefore, each node only has one ingress
tunnel and k egress tunnels, one for each of the workers it’s
currently exchanging traffic with. To support router configu-
rations without any open incoming ports we envision, in the
future, allowing service’s connections to transit via the cluster
orchestrator. In this case, the service manager acts as a VPN
server that tunnels the traffic between worker nodes.

If the NetManager cannot forward a message (e.g., due to
out-of-date information), the route is immediately deleted,
and a route refresh is performed. This mechanism avoids
imposing a strong consistency requirement on the worker’s
caches. While this approach might miss the best balancing op-
tion when a route update is still propagating asynchronously,
it reduces the synchronization effort and, thus, overhead.

We note that by assigning the majority of networking com-
plexity to the worker node, Oakestra dramatically reduces
the overhead of orchestration machines. The service manager
sends only the most relevant routes for each service (accord-
ing to an internal worker-wise priority list) to increase the
scalability and avoid further congestion on the workers. The
inherent decentralized networking design of Oakestra is also
tolerant towards infrastructure failures. For instance, coupled
microservices will continue to communicate with each other
even if the cluster (and root) orchestrator becomes unavail-
able – as long as the host worker node is operational and the
endpoints do not migrate (to a different cluster).

3.5 Fault Tolerance.

We now explore the different possible failure cases and how
Oakestra manages them. While Oakestra decouples the
two-tier master-worker orchestration design, prevalent in pop-
ular frameworks, in a hierarchical three-tier infrastructure, it
is still dependent on the root, which may appear as a central
point of failure. In case the root orchestrator fails, the plat-
form is unable to register new applications as well as schedule
new instances to new clusters. Applications that are already
part of a cluster can locally replicate, scale, and migrate. The
networking is partially affected by root failure since existing
tunnels and communication will continue to work, but new
inter-cluster links require the root network component for the
setup process. Each cluster’s aggregated information cannot
be propagated, but it will be stored until the root is back online.
Since the root is likely to be deployed in the cloud to maxi-
mize reachability, it is less frequently affected by failures due
to hardware issues. Moreover, in such contexts, traditional
redundancy and failover mechanisms can potentially be im-
plemented with redundant replicas, synchronized key-value
stores, and L7 load balancing to properly route the cluster’s
traffic to the active root instance.

A cluster orchestrator failure does not affect other clus-
ters’ activities. As soon as a cluster stops responding, the
root marks the applications deployed within that cluster as
failed and attempts to replicate the existing workload to new
suitable clusters. The worker nodes will not be able to update
their status on the failed cluster orchestrator, but the appli-
cations will remain operational. The root will then schedule
new backup application replicas in the remaining clusters, and
the network routes will reactively change toward the newly
managed instances. Worker node failures may be frequent and
expected at the edge; for this reason, the workloads deployed
on a failed node are immediately rescheduled. The network
automatically adjusts and balances the traffic to the active
instances disregarding the unreachable ones. The cluster or-
chestrator discontinues aggregating failed node’s resources
from the cluster’s pool in further updates.

In addition to the current fault tolerance strategies and as-
sumptions, in future extensions, we envision having multiple
replicas of the orchestrator components that coarsely stay
in sync with the primary (similar to the multi-master setup
in Kubernetes) and/or a leader election strategy to react to
control plane failures. Moreover, we intend to explore the
orchestration problem in contexts where byzantine behaviors
can be expected at both worker and cluster levels.

4 Implementation

We implement Oakestra and its components (fig. 1) with
constraints of heterogeneous edge infrastructures in mind.
The implementation, spanning 18000 LOC, is modular, ex-
tensible, lightweight and open-source [52]. As we show later,

Oakestra can support production-ready applications at the
edge much more effectively than the state-of-the-art.

Root and cluster orchestrators are implemented using
Python in a similar structure owing to their architectural simi-
larities. The schedulers, system/cluster manager and service
manager are implemented as independent micro-services. The
database is implemented as two separate instances of mon-
goDB [5], one for the service manager and one for the system/-
cluster manager. The implementation does not force strong
consistency in cluster’s or root’s data structures. They update
asynchronously, improving the overall system’s scalability –
at the cost of occasionally dealing with application reschedul-
ing. The scheduler microservice uses a celery task queue [1]
to pull the incoming tasks and find the best placement asyn-
chronously. Scheduling policies are described in Python but
are designed to be language-agnostic. The system and cluster
managers communicate with the database services and the
service manager via REST APIs. The external root APIs for
the infrastructure providers and application developers are
implemented according to the Open API Specification [7]
and authenticated using JWT tokens [4]. Inter-cluster links
are RESTful APIs as well while the intra-cluster control links
are implemented using MQTT. With a Mosquitto broker [6]
hosted at each cluster orchestrator, a worker can subscribe
to network routes updates, and publish internal resource con-
sumption and task status. We also provide an Angular web-
based frontend attached to the root that can be used by the
developers to facilitate (i) creation of applications and de-
scribing the services graphically, (ii) monitor each service
instance’s status and position (fig. 13b), and (iii) scale the
services up and down (see Appendix A).

The NodeEngine component as well as the NetManager
are implemented as independent services using GoLang to
ensure low footprint and maximum support to many exe-
cution run-times SDKs. The container’s execution runtime
is supported with the integration of containerd [2]. Uniker-
nel [40, 44] support is currently under development with
QEMU [8] virtualization. The runtime selector is designed
to be extended to support even more virtualization technolo-
gies in the future, e.g. microVM [11]. The NetManager com-
ponent uses native Linux virtual network interfaces to cre-
ate a bridge connected via veth pairs with the TUN inter-
face (namely proxyTUN) and the service’s network names-
pace. The NetManager minimizes system context changes
and makes extensive use of Goroutines pools to resolve
the incoming traffic with high parallelism. The semantic ad-
dresses are reserved from a pre-defined 10.30.0.0/16 sub-
network. The traffic belonging to the semantic sub-network
is forwarded to proxyTUN.

5 Evaluation

This section focuses on evaluating Oakestra as compared to
the state-of-the-art on edge infrastructures and constrained

devices. We use two different testbeds for our evaluation. The
High-Performance Computing (HPC) testbed is a large, con-
trolled, x86 processor-based cluster, in which we use S, M,
L, XL VMs with <1,1>, <2,2>, <4,4> and <8,8> <CPU
core,RAM (GB)> configurations, respectively. We use this
cluster to flexibly spawn resources and emulate a hetero-
geneous infrastructure. Our Heterogeneous (HET) testbed
is a local cluster composed of Raspberry Pis [33], Intel
NUCs [36], mini-desktops, and Jetson Xavier [50] – rep-
resenting different edge computing flavors [68]. The HPC
cluster is interconnected by 1 Gbps Ethernet, while HET ma-
chines connect over Wi-Fi 802.11ac and 1 Gbps Ethernet links.
We attempted to compare Oakestra against popular orches-
tration frameworks. However, despite careful management,
KubeFed [35], KubeEdge [19], ioFog [31] and Fog05 [30]
experience frequent failures, possibly because they are (i) in
early development stages or (ii) not optimized for constrained
hardware. Moreover, we could not locate OneEdge’s source
code [60], which is the only framework architecturally simi-
lar to Oakestra. As a result, we compare Oakestra against
Kubernetes (K8s) [34] and its two lightweight derivatives, Mi-
croK8s [43] and K3s [29]. All selected frameworks are widely
used and have been considered for use with the edge [15,37].
We use two application workloads, (i) an Nginx web server
allowing us to control the operational load dynamically, and
(ii) a video analytics application from [13]. The latter is com-
posed of four microservices. The source sends a pre-recorded
RTP stream [17], aggregation stitches and pre-processes each
frame, detection uses YOLOv3 to detect objects, and track-
ing tracks objects across frames. To remain comparable with
the “kube” frameworks, we operate Oakestra in standalone
mode, i.e., all workers are deployed within the same cluster.
We perform 10 runs for each experiment and clean intermedi-
ary files between runs.

5.1 Service Deployment

Figure 5a compares the time taken by each framework to
deploy a containerized application on the infrastructure. For
this experiment, we configure an XL VM as root, an L VM
as cluster orchestrator in Oakestra (and master for others),
and S VMs as workers. Oakestra uses the ROM scheduler,
which is comparable to the default scheduling policy of the
competitors [32]. We increase the cluster size from 2 to 10
workers and measure scheduling overheads by toggling its
operation, shown with s (with scheduler) and ns (no sched-
uler). MicroK8s performs significantly worse (≈ 10× slower)
than Oakestra, degrading further with increasing infrastruc-
ture size. As also noticed in [15], microK8s might easily lead
to higher resource usage and generally slower performance.
We attribute it to (i) snap, which brings extra virtualization
overhead, and (ii) microk8s being optimized for single-node
deployments. Kubernetes is 2–3× slower than Oakestra. Its
scheduling operation adds almost negligible overhead – this

2-workers 6-workers 10-workers
0

20

40

60

T
im

e
(s

)

Oakestra-[ns]
Oakestra-[s]
K3s-[ns]
K3s-[s]

K8s-[ns]
K8s-[s]
MicroK8s-[ns]
MicroK8s-[s]

(a) Deployment time

worker
0
8

16
24
32
40
48
56

C
P

U
(%

)

2-workers 6-workers 10-workers
master

0
4
8

12
16
20
24

Oakestra K3s K8s MicroK8s

(b) CPU utilization

Figure 5: Performance comparison for different infrastructure sizes.

0 25 50 75 100
Services Worker

0

25

50

75

100

C
P

U
(%

)

0 250 500 750 1000
Services Cluster

K3s
Oakestra

Figure 6: CPU usage of worker & cluster
orch. in stress (line=median).

10 50 100 250
Network Delay (ms)

0.00

0.25

0.50

0.75

1.00

1.25

D
ep

lo
ym

en
t

T
im

e
∆

(s
) K3s

Oakestra

Figure 7: Deployment time
with network delay.

Oakestra K3s K8s MicroK8s
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

R
T

T
(m

s)

2 worker 10 worker

Figure 8: End-to-end latency

result is in line with other recent explorations [15]. One of the
reasons why K3s has been generally considered lightweight
is its single binary executable that also reduces the internal
overhead and synchronization time. This approach, used by
Oakestra as well, resulted in a comparable deployment time.

Repeating the experiment in our HET testbed, we intro-
duced increasing networking delay using tc on the network
interface to highlight the overhead due to master-worker syn-
chronization. In fig. 7, we observe that Oakestra’s deploy-
ment times improve over K3s by a ≈ 20% margin in high de-
lay networks (common for wireless last-mile [22,26,46]). The
behavior is similar for lossy networks as Oakestra achieved
≈ 50% and 60% deployment time reduction with 20% and
50% losses, respectively (not shown for brevity). The even-
tual consistent store of Oakestra allows the platform to asyn-
chronously manage the deployment with reduced network
traffic. As shown later in §5.5, “kube” orchestrators send ≈
2× more control messages (from both worker and master) on
average – hinting at the cause of their degradation to aggra-
vating network conditions. Experiments on the HET cluster
typically yielded better results than those on HPC. This is
because a more powerful (yet still limited) Raspberry Pi 4
was used as the target device in HET, as opposed to the size S
worker nodes utilized in HPC.

5.2 Scalability

First, we analyze the idle resource consumption of each frame-
work to estimate the baseline overhead. Lower overhead at
the worker indicates a platform’s capability to operate on

constrained devices. In comparison, lower overhead at the
master (at different infrastructure sizes) highlights its ability
to handle scale (fig. 5b). We observe that within the cho-
sen competitors, K8s is the one that better handles cluster
scalability at the masters, showing no noticeable increase in
CPU usage. Meanwhile, K3s and MicroK8s masters show a
lower average CPU usage than k8s in two-worker setup but
much worse degradation in 6 and 10 workers clusters. At the
worker level, k3s is almost 50% faster than K8s. MicroK8s
exhibits, again, a higher footprint. We attribute this to the
same motivations expressed in §5.1. Due to its asynchronous
pub-sub communication and its cluster resource aggregation
mechanism, Oakestra achieves ≈ 6× and 11× reduction in
CPU on the workers and master, respectively. Particularly, an
Oakestra worker only maintains an MQTT connection to
the cluster’s broker to periodically report the device resource
usage. The orchestrator, subscribed to worker resource topics,
only updates the internal database with the latest worker uti-
lization information. Compared to k8s, Oakestra maintains
a considerably reduced duty cycle while idling.

Since K3s comes closest to Oakestra at the worker’s level,
we perform a stress test comparing both for increasing ser-
vice deployments. Figure 6 compares the CPU consumption
as we increasingly schedule up to 100 Nginx containers on
each worker in a 10 node cluster (totaling 1000 containers in
the cluster). The left and the right half show the worker and
cluster orchestrator (or K3s master) utilization, respectively.
Oakestra sees negligible overhead performing ≈ 10–20%
better than K3s – demonstrating its efficacy to support large
service volumes. Oakestra’s average cluster CPU usage in-
creases by less than 1% during the experiment since each
node piggybacks the service status onto the internal resource
consumption updates, lowering network usage and processing
cycles at the orchestrator. Similarly, Oakestra shows signif-
icant operational advantages for constrained worker nodes.
While K3s exhausted the worker’s CPU at ≈ 40 services,
Oakestra deployed the 100 services with a 30% average
CPU surplus. Memory utilization showed a similar trend as
Oakestra achieved ≈ 18% and ≈ 33% reduction to K3s in
worker and master, respectively (not shown).

5.3 Networking

We evaluate the round-robin balancing policy of the network-
ing scheme presented in §3.4 against the native balanced
cluster IP of K3s, K8s, and MicroK8s. First, in a 2-worker
setup, we deploy a Python client on the first worker and an Ng-
inx server on the second worker. We then scale the number of
workers to 10 and deploy one client and 9 Nginx servers, one
on each worker node. The client performs continuous GET
requests using a round robin service IP on Oakestra and
a cluster IP on the kube family with a statically configured
round robin policy. Figure 8 shows the average round-trip
latency between the client and the closest server. On average,
K3s performs better in a 1-to-1 (2 workers) setting (10–20%
improvement), while Kubernetes and MicroK8s perform 17%
and 30% slower. All competitors’ load balancing is signifi-
cantly worse than Oakestra in multiple replica settings, re-
sulting in ≈ 15 up to 35% RTT inflation. The results show
the benefits and overhead of the proposed addressing scheme.
Oakestra performs proxying and site-to-site tunneling for ev-
ery packet, even in a simple setup with just one client and one
server, slightly increasing the overhead even in LAN setups,
like the experiment above. On the other hand, this abstrac-
tion brings benefits when scaling up the system, introducing
minimal additional overhead while balancing with more repli-
cas and outperforming the other systems. In the future, we
plan to optimize the 1-to-1 scenario by temporarily disabling
the proxy and utilizing VXLAN-based solutions for nodes
belonging to the same network.

We evaluated the impact of Oakestra’s tunneling on the
bandwidth. While the proposed network component is mainly
designed to implement semantic addressing, it can also tunnel
the traffic between nodes on different networks. For this rea-
son, we test the impact on the bandwidth by comparing it with
WireGuard [27] – an open-source tunneling solution used by
most frameworks. We emulate the network inconsistencies
at the edge [46] by gradually increasing the delay between
the client and the servers from 10 to 250 ms. Figure 12 com-
pares the time to download a 100 MB file over HTTP using
both approaches. We find that, even in high-delay networks,
Oakestra is always within the competitive range (2-10%) of
WireGuard. We consider this a promising result given that
the proposed networking component performs proxying on
top of the “simple” tunneling operations of WireGuard.

5.4 Scheduler Performance

This section shows a preliminary evaluation of ROM and LDP
schedulers. Figure 10 depicts both schedulers’ performance
in a simulated infrastructure with up to 500 edge servers (vir-
tually configured in HPC). We use network latencies between
edge servers within 10–250 ms, a typical latency range be-
tween users and datacenters globally [21]. We instruct the
schedulers (via the SLA) to find workers that satisfy 1 CPU,

NativeOakestra K3s
0

100

200

300

400

500

600

P
ro

ce
ss

in
g

(m
s)

(a) Tracking

NativeOakestra K3s
3000

4000

5000

6000

7000

8000

9000

P
ro

ce
ss

in
g

(m
s)

(b) Detection

Native Oakestra K3s
1.0

1.2

1.4

1.6

1.8

2.0

2.2

F
P

S

(c) FPS

Figure 9: Video analytics application performance.

10 50 100 500
Number of Workers

0

20

40

60

80

100

120

140

L
D

P
C

al
cu

la
ti

on
T

im
e

(m
s)

10 50 100 500
Number of Workers

0

20

40

60

80

100

120

R
T

T
(m

s)

Service-to-Service ROM
Service-to-User ROM
Service-to-Service LDP
Service-to-User LDP
Threshold

Figure 10: Performance of ROM and LDP schedulers.

100 MB memory, ≈ 20 ms latency (usual for immersive edge
applications [46]), and 120 km operational distance. Since
ROM only performs a best-fit match for computational re-
quirements, its calculation time does not increase significantly
while increasing the number of workers. LDP’s calculation
time grows increasingly with infrastructure size. However,
LDP can effectively support latency-based constraints since it
usually satisfies the RTT thresholds even in large edge infras-
tructures, which implies that the search space increases with
the number of nodes. We leave a detailed comparison of differ-
ent scheduling algorithms to future work as their performance
is not the focal point of this paper.

5.5 Control Communication Overhead

Figure 11 shows a comparison between the number of ex-
changed control messages of Oakestra and K3s. First, we
compare the K3s master and Oakestra’s cluster orchestrator
for an apples-to-apples comparison. Then, we compare the
control messages exchanged at the worker level. We record the
network messages using the strace. Since K3s is a derivative
of Kubernetes, they both use similar control communication.
Both Oakestra and K3s workers send periodic updates to
the master and receive control commands in return. However,
the number of control messages ingress/egress on K3s far
exceeds Oakestra (≈ 2×). These results help explain the
observations presented in fig. 7. Moreover, a larger amount of
control traffic also influences the time needed to synchronize
the infrastructure and perform a deployment. Specifically,
the master of “kube” based frameworks sends frequent mes-
sages to the workers, including specification of the pods to
be attached to the workers, liveness checks, etc., requiring

Oakestra K3s
0

500

1000

1500

2000

2500

3000

3500

4000

E
xc

ha
ng

ed
M

es
sa

ge
s

Master Worker

Figure 11: Control
message overhead.

10 50 100 250
Network delay (ms)

0
5

10
15
20
25
30
35

B
an

dw
id

th
(M

bp
s)

WireGuard Oakestra

Figure 12: Oakestra vs. WireGuard
tunneling overhead.

information/acknowledgment in return. The control commu-
nication of Oakestra, on the other hand, is simplified to send
periodical aggregated service information from the worker
over MQTT messages and keep a minimal footprint. It must
be considered that Oakestra still does not provide the guar-
antees of a production-ready platform. Increasing the mon-
itoring capacity and the update frequency will result in an
increase of control traffic. We, therefore, plan on improving
the control message communication channel in the future
by dynamically tuning the update frequency depending on
network conditions.

5.6 Video Analytics Application
We deploy the four microservices composing the video ana-
lytics pipeline described earlier on four S VMs in the HPC
testbed. The provisioned resources do not support GPU accel-
eration and are single-core machines; therefore, the resulting
FPS output is expected to be low. This setup is supposed to
stress the platforms into executing this relatively heavy work-
load on extremely constrained resources. Both K8s and Mi-
croK8s could not support the application since their orchestra-
tion components consumed most of the hardware capacity. As
a result, we compare application performance over Oakestra,
K3s, and without orchestration (native), with native acting as
baseline (see fig. 9). Oakestra and K3s exhibit similar per-
formance for object tracking, taking ≈ 300-400 ms. However,
due to its minimal footprint Oakestra significantly outper-
forms K3s for supporting the more resource-demanding ob-
ject detection service, achieving results closer to the baseline.
Overall, application performance over Oakestra exceeded
K3s by almost 10%. We omit our HET testbed results since
they performed similarly to HPC.

6 Conclusion

We presented Oakestra, a flexible hierarchical orchestration
framework designed for heterogeneous and constrained edge
computing infrastructures. With its logical management hier-
archy, Oakestra can sustain a high degree of context separa-
tion at scale. The delegated service scheduling of Oakestra

reduces the task placement complexity and allows the frame-
work to dynamically adjust to infrastructure changes irre-
spective of the scale. Furthermore, the proposed networking
component enables developers to seamlessly and dynamically
adjust the balancing policy with minimal overhead while na-
tively being able to cross different networking boundaries.
The lightweight implementation of Oakestra allows it to eas-
ily manage constrained resources likely to operate as “edge
servers”. In such contexts Oakestra superseded the perfor-
mance of popular production frameworks (Kubernetes and its
derivatives), achieving ≈ 10× resource usage reduction and
10% application performance improvement.

We plan to add several feature extensions to Oakestra. For
example, we aim to dynamically assign the cluster orches-
trator role upon failovers via distributed leader election. We
also intend to extend the scheduling and networking capabili-
ties of Oakestra with recent research solutions for the edge,
e.g. deadline-aware scheduling, multi-level tunneling, etc. To
provide better QoS guarantees, we also aim to support and
compare more recent application runtimes such as unikernels,
demikernels, or Akka. Finally, we also seek to explore the pos-
sibility to incorporate Kubernetes deployments as Oakestra’s
clusters to achieve integration for existing cloud deployments.

Acknowledgments

We would like to thank the anonymous ATC reviewers and
the shepherd for their helpful comments and insights during
the review process of this paper. We would also like to thank
the ATC Artifact Evaluation Committee for their meticulous
examination and efforts to reproduce our results. We are also
thankful to Hasso Plattner Institute (HPI) Germany for pro-
viding us access to their infrastructure which was instrumen-
tal for our experiments. This work was partly supported by
the Federal Ministry of Education and Research of Germany
(BMBF) project 6G-Life (16KISK002) and EU Health and
Digital Executive Agency (HADEA) program under Grant
Agreement No 101092950 (EDGELESS project).

References

[1] Celery - distributed task queue. https://docs.
celeryq.dev/en/stable/.

[2] Containerd - an industry-standard container runtime
with an emphasis on simplicity, robustness and portabil-
ity. https://containerd.io.

[3] Istio - simplify observability, traffic management, secu-
rity, and policy with the leading service mesh. https:
//istio.io.

[4] Jwt tokens. https://jwt.io.

https://docs.celeryq.dev/en/stable/
https://docs.celeryq.dev/en/stable/
https://containerd.io
https://istio.io
https://istio.io
https://jwt.io

[5] Mongodb documentation. https://www.mongodb.
com/docs/.

[6] Mosquitto mqtt broker. https://mosquitto.org.

[7] Openapi initiative. https://www.openapis.org.

[8] Qemu - a generic and open source machine emulator
and virtualizer. https://www.qemu.org.

[9] Submariner - a tool built to connect overlay networks of
different kubernetes clusters. https://github.com/
submariner-io/submariner.

[10] Kubernetes components, Mar 2021.

[11] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtual-
ization for serverless applications. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 419–434, Santa Clara, CA,
February 2020. USENIX Association.

[12] Maha Aljarah, Mohammad Shurman, and Sharhabeel H
Alnabelsi. Cooperative hierarchical based edge-
computing approach for resources allocation of dis-
tributed mobile and iot applications. International Jour-
nal of Electrical and Computer Engineering (IJECE),
10(1):296–307, 2020.

[13] Simon Bäurle and Nitinder Mohan. Comb: A flexible,
application-oriented benchmark for edge computing. In
Proceedings of the 5th International Workshop on Edge
Systems, Analytics and Networking, EdgeSys ’22, page
19–24, New York, NY, USA, 2022. Association for Com-
puting Machinery.

[14] Romil Bhardwaj, Zhengxu Xia, Ganesh Anantha-
narayanan, Junchen Jiang, Yuanchao Shu, Nikolaos Kar-
ianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica.
Ekya: Continuous learning of video analytics models on
edge compute servers. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 119–135, Renton, WA, April 2022. USENIX
Association.

[15] Sebastian Böhm and Guido Wirtz. Profiling lightweight
container platforms: Microk8s and k3s in comparison
to kubernetes. In ZEUS, pages 65–73, 2021.

[16] Antonio Brogi, Stefano Forti, Carlos Guerrero, and Isaac
Lera. How to place your apps in the fog: State of the
art and open challenges. Software: Practice and Experi-
ence, 50(5):719–740, 2020.

[17] Tatjana Chavdarova, Pierre Baque, Stephane Bouquet,
Andrii Maksai, Cijo Jose, Timur Bagautdinov, Louis

Lettry, Pascal Fua, Luc Van Gool, and Francois Fleuret.
WILDTRACK: A Multi-camera HD Dataset for Dense
Unscripted Pedestrian Detection. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 5030–5039, Salt Lake City, UT, June 2018.
IEEE.

[18] Claudio Cicconetti, Marco Conti, and Andrea Passarella.
A decentralized framework for serverless edge comput-
ing in the internet of things. IEEE Transactions on
Network and Service Management, 18(2):2166–2180,
2021.

[19] Cloud Native Computing Foundation (CNCF).
Kubeedge. https://github.com/kubeedge/
kubeedge, 2022.

[20] Google Coral. Coral edge. https://coral.ai/
products, 2022.

[21] Lorenzo Corneo, Maximilian Eder, Nitinder Mohan,
Aleksandr Zavodovski, Suzan Bayhan, Walter Wong,
Per Gunningberg, Jussi Kangasharju, and Jörg Ott. Sur-
rounded by the clouds: A comprehensive cloud reach-
ability study. In Proceedings of the Web Conference
2021, WWW ’21, page 295–304, New York, NY, USA,
2021. Association for Computing Machinery.

[22] Lorenzo Corneo, Nitinder Mohan, Aleksandr Za-
vodovski, Walter Wong, Christian Rohner, Per Gunning-
berg, and Jussi Kangasharju. (how much) can edge com-
puting change network latency? In 2021 IFIP Network-
ing Conference (IFIP Networking), pages 1–9, 2021.

[23] Michael Cote. Why large organizations trust kuber-
netes. https://tanzu.vmware.com/content/blog/
why-large-organizations-trust-kubernetes,
2020.

[24] Vittorio Cozzolino, Leonardo Tonetto, Nitinder Mohan,
Aaron Yi Ding, and Jorg Ott. Nimbus: Towards latency-
energy efficient task offloading for ar services. IEEE
Transactions on Cloud Computing, pages 1–1, 2022.

[25] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert
Morris. Vivaldi: A decentralized network coordinate sys-
tem. SIGCOMM Comput. Commun. Rev., 34(4):15–26,
aug 2004.

[26] The Khang Dang, Nitinder Mohan, Lorenzo Corneo,
Aleksandr Zavodovski, Jörg Ott, and Jussi Kangasharju.
Cloudy with a chance of short rtts: Analyzing cloud
connectivity in the internet. In Proceedings of the 21st
ACM Internet Measurement Conference, IMC ’21, page
62–79, New York, NY, USA, 2021. Association for Com-
puting Machinery.

https://www.mongodb.com/docs/
https://www.mongodb.com/docs/
https://mosquitto.org
https://www.openapis.org
https://www.qemu.org
https://github.com/submariner-io/submariner
https://github.com/submariner-io/submariner
https://github.com/kubeedge/kubeedge
https://github.com/kubeedge/kubeedge
https://coral.ai/products
https://coral.ai/products
https://tanzu.vmware.com/content/blog/why-large-organizations-trust-kubernetes
https://tanzu.vmware.com/content/blog/why-large-organizations-trust-kubernetes

[27] Jason A. Donenfeld. WireGuard. https://www.
wireguard.com/, 2022.

[28] Janick Edinger, Martin Breitbach, Niklas Gabrisch, Do-
minik Schäfer, Christian Becker, and Amr Rizk. De-
centralized low-latency task scheduling for ad-hoc com-
puting. In 2021 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 776–
785, 2021.

[29] Cloud Native Computing Foundation. Lightweight ku-
bernetes | k3s. https://k3s.io, 2022.

[30] Eclipse Foundation. Eclipse fog05. https://fog05.
io/, 2022.

[31] Eclipse Foundation. Eclipse iofog. https://iofog.
org/, 2022.

[32] Linux Foundation. Scheduling and eviction | kuber-
netes. https://kubernetes.io/docs/concepts/
scheduling-eviction/, 2022.

[33] Raspberry Pi Foundation. Raspberry pi 4.
https://www.raspberrypi.org/products/
raspberry-pi-4-model-b/specifications/,
2022.

[34] The Linux Foundation. Kubernetes, 2022.

[35] The Linux Foundation. Kubernetes cluster federation
| kubefed. https://github.com/kubernetes-sigs/
kubefed, 2022.

[36] Intel. Intel nuc. https://www.intel.com/content/
www/us/en/products/details/nuc/boards.html,
2022.

[37] Andrew Jeffery, Heidi Howard, and Richard Mortier.
Rearchitecting kubernetes for the edge. In Proceedings
of the 4th International Workshop on Edge Systems, An-
alytics and Networking, EdgeSys ’21, page 7–12, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[38] Youngjin Kim, Chiwon Song, Hyuck Han, Hyungsoo
Jung, and Sooyong Kang. Collaborative task scheduling
for iot-assisted edge computing. IEEE Access, 8:216593–
216606, 2020.

[39] Daniel King and Adrian Farrel. A Survey of Semantic
Internet Routing Techniques. Internet-Draft draft-king-
irtf-semantic-routing-survey-03, Internet Engineering
Task Force, November 2021.

[40] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre,
Sharan Santhanam, Alexander Jung, Gaulthier Gain,
Cyril Soldani, Costin Lupu, Ştefan Teodorescu, Costi

Răducanu, Cristian Banu, Laurent Mathy, Răzvan Dea-
conescu, Costin Raiciu, and Felipe Huici. Unikraft: Fast,
specialized unikernels the easy way. In Proceedings of
the Sixteenth European Conference on Computer Sys-
tems, EuroSys ’21, page 376–394, New York, NY, USA,
2021. Association for Computing Machinery.

[41] Juan Liu, Yuyi Mao, Jun Zhang, and Khaled B. Letaief.
Delay-optimal computation task scheduling for mobile-
edge computing systems. In 2016 IEEE International
Symposium on Information Theory (ISIT), pages 1451–
1455, 2016.

[42] Qiang Liu and Tao Han. Virtualedge: Multi-domain re-
source orchestration and virtualization in cellular edge
computing. In 2019 IEEE 39th International Confer-
ence on Distributed Computing Systems (ICDCS), pages
1051–1060, 2019.

[43] Canonical Ltd. Lightweight kubernetes | microk8s.
https://microk8s.io, 2022.

[44] Anil Madhavapeddy and David J. Scott. Unikernels: The
rise of the virtual library operating system. Commun.
ACM, 2014.

[45] Karim Manaouil and Adrien Lebre. Kubernetes and the
Edge? PhD thesis, Inria Rennes-Bretagne Atlantique,
2020.

[46] Nitinder Mohan, Lorenzo Corneo, Aleksandr Za-
vodovski, Suzan Bayhan, Walter Wong, and Jussi Kan-
gasharju. Pruning edge research with latency shears.
HotNets ’20, page 182–189, New York, NY, USA, 2020.
Association for Computing Machinery.

[47] Nitinder Mohan and Jussi Kangasharju. Edge-fog cloud:
A distributed cloud for internet of things computations.
In 2016 Cloudification of the Internet of Things (CIoT),
pages 1–6, 2016.

[48] Seyed Hossein Mortazavi, Mohammad Salehe, Car-
olina Simoes Gomes, Caleb Phillips, and Eyal de Lara.
Cloudpath: A multi-tier cloud computing framework. In
Proceedings of the Second ACM/IEEE Symposium on
Edge Computing, SEC ’17, New York, NY, USA, 2017.
Association for Computing Machinery.

[49] Shadi A. Noghabi, Landon Cox, Sharad Agarwal, and
Ganesh Ananthanarayanan. The emerging landscape of
edge computing. GetMobile: Mobile Comp. and Comm.,
23(4):11–20, may 2020.

[50] Nvidia. Jetson agx xavier. https://www.
nvidia.com/en-us/autonomous-machines/
jetson-agx-xavier/, 2022.

https://www.wireguard.com/
https://www.wireguard.com/
https://k3s.io
https://fog05.io/
https://fog05.io/
https://iofog.org/
https://iofog.org/
https://kubernetes.io/docs/concepts/scheduling-eviction/
https://kubernetes.io/docs/concepts/scheduling-eviction/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://www.intel.com/content/www/us/en/products/details/nuc/boards.html
https://www.intel.com/content/www/us/en/products/details/nuc/boards.html
https://microk8s.io
https://www.nvidia.com/en-us/autonomous-machines/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/jetson-agx-xavier/

[51] Oakestra. Oakestra - discord. https://discord.gg/
7F8EhYCJDf, 2023.

[52] Oakestra. Oakestra - github. https://github.com/
oakestra, 2023.

[53] Oakestra. Oakestra artifacts - experi-
ments. https://github.com/oakestra/
USENIX-ATC23-Oakestra-Artifacts/tree/main/
Experiments, 2023.

[54] Oakestra. Oakestra artifacts - main.
https://github.com/oakestra/
USENIX-ATC23-Oakestra-Artifacts, 2023.

[55] Oakestra. Oakestra artifacts - net-
work. https://github.com/oakestra/
USENIX-ATC23-Oakestra-net-Artifacts, 2023.

[56] Oakestra. Oakestra wiki. https://www.oakestra.
io/docs/, 2023.

[57] M. Krochmal S. Cheshire. Rfc 6762 - multicast dns.
2013.

[58] Hooman Peiro Sajjad, Ken Danniswara, Ahmad Al-
Shishtawy, and Vladimir Vlassov. Spanedge: Towards
unifying stream processing over central and near-the-
edge data centers. In 2016 IEEE/ACM Symposium on
Edge Computing (SEC), pages 168–178, 2016.

[59] Farah Aït Salaht, Frédéric Desprez, and Adrien Lebre.
An overview of service placement problem in fog and
edge computing. ACM Comput. Surv., 53(3), jun 2020.

[60] Enrique Saurez, Harshit Gupta, Alexandros Daglis, and
Umakishore Ramachandran. Oneedge: An efficient
control plane for geo-distributed infrastructures. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
SoCC ’21, page 182–196, New York, NY, USA, 2021.
Association for Computing Machinery.

[61] W. Shi and S. Dustdar. The promise of edge computing.
Computer, 49(5):78–81, 2016.

[62] Tanya Shreedhar, Sanjit K. Kaul, and Roy D. Yates.
An age control transport protocol for delivering fresh
updates in the internet-of-things. In 2019 IEEE 20th
International Symposium on "A World of Wireless, Mo-
bile and Multimedia Networks" (WoWMoM), pages 1–7,
2019.

[63] Manoel C Silva Filho, Claudio C Monteiro, Pedro RM
Inácio, and Mário M Freire. Approaches for optimizing
virtual machine placement and migration in cloud envi-
ronments: A survey. Journal of Parallel and Distributed
Computing, 2018.

[64] SuperMicro. Outdoor edge systems. https://www.
supermicro.com/en/products/outdoor-edge,
2022.

[65] Dianomic Systems. Foglamp – simplifying iiot data
management from sensors to clouds. https://
dianomic.com/platform/foglamp/, 2022.

[66] Li Tianze, Wu Muqing, Zhao Min, and Liao Wenxing.
An overhead-optimizing task scheduling strategy for
ad-hoc based mobile edge computing. IEEE Access,
5:5609–5622, 2017.

[67] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang,
Weisong Shi, and Qun Li. Lavea: Latency-aware video
analytics on edge computing platform. In Proceedings
of the Second ACM/IEEE Symposium on Edge Comput-
ing, SEC ’17, New York, NY, USA, 2017. ACM.

[68] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna
Kadiyala, Fatemeh Jalali, Amirreza Niakanlahiji, Jian
Kong, and Jason P. Jue. All one needs to know about
fog computing and related edge computing paradigms:
A complete survey. Journal of Systems Architecture,
98:289–330, 2019.

[69] Wuyang Zhang, Sugang Li, Luyang Liu, Zhenhua Jia,
Yanyong Zhang, and Dipankar Raychaudhuri. Hetero-
edge: Orchestration of real-time vision applications on
heterogeneous edge clouds. In IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications, pages
1270–1278, 2019.

A Oakestra Frontend

Oakestra also provides a front-end application that can be
used by the developers to create applications and describe
the services composing them graphically. A developer can
generate the SLA of each microservice through a form. Then,
the services connections can be specified using the connection
graph (fig. 13a). This graph allows developers to interconnect
the services and specify their latency requirements. Once
the connection graph is complete, the developer can ask the
infrastructure to schedule the desired application. Via the
interface, the developer can check each service instance’s
status and position (fig. 13b); they can also scale the services
up, down, or terminate them.

B Artifact Appendix

Abstract
Oakestra is an open-source project with all components
publicly available on GitHub at https://github.com/
oakestra. To ensure the reproducibility of the experiments

https://discord.gg/7F8EhYCJDf
https://discord.gg/7F8EhYCJDf
https://github.com/oakestra
https://github.com/oakestra
https://github.com/oakestra/USENIX-ATC23-Oakestra-Artifacts/tree/main/Experiments
https://github.com/oakestra/USENIX-ATC23-Oakestra-Artifacts/tree/main/Experiments
https://github.com/oakestra/USENIX-ATC23-Oakestra-Artifacts/tree/main/Experiments
https://github.com/oakestra/USENIX-ATC23-Oakestra-Artifacts
https://github.com/oakestra/USENIX-ATC23-Oakestra-Artifacts
https://github.com/oakestra/USENIX-ATC23-Oakestra-net-Artifacts
https://github.com/oakestra/USENIX-ATC23-Oakestra-net-Artifacts
https://www.oakestra.io/docs/
https://www.oakestra.io/docs/
https://www.supermicro.com/en/products/outdoor-edge
https://www.supermicro.com/en/products/outdoor-edge
https://dianomic.com/platform/foglamp/
https://dianomic.com/platform/foglamp/
https://github.com/oakestra
https://github.com/oakestra

(a) Service connection graph

(b) Deployment monitoring interface

Figure 13: Oakestra web-based front-end application

conducted within this paper, we fork our project repositories
at [54] and [55]. Additionally, we also provide a comprehen-
sive README, which includes a get-started guide, that can
be used for recreating our setup, experiments and familiariz-
ing with the Oakestra platform [53].

Scope
The proposed artifacts represents a snapshot of the project that
aligns with the paper. The proposed artifacts enable replicat-
ing the performance results of Oakestra as shown in section
§5. However, if the reader is planning to use the latest version
of the platform and utilize Oakestra’s latest functionalities,
we recommend exploring the official website and repository
instead.

Contents
Figure 14 shows how the components introduced in §3 can
be related to the github repositories. Specifically, the source
code, the release binaries and container images are split into
the repositories as follows:

• oakestra/oakestra [54]: This repository contains
the Root & Cluster orchestrators folders, as well

Root Scheduler
System
Manager

Root Database

Root Orchestrator

Cluster
Manager

Cluster Scheduler

Cluster Database

Node
Engine

amd64

Worker 1

Service
Manager

Service
Manager

Web Frontend

Net
Manager

Execution
Runtime

Cluster Orchestrator

Cluster 1

oakestra/oakestra-net oakestra/oakestra oakestra/dashboard
(optional)

Figure 14: Summary of how the components are split across
the repositories

as the Node Engine source code for the worker
node. Inside the root orchestrator folder, the folders
system-manager-python/ and cloud_scheduler/
contain the System Manager and the Cloud Sched-
uler source code, respectively. Similarly, the Clus-
ter Orchestrator folder includes the source of the
cluster-manager/ and the cluster-scheduler/. Fi-
nally, go-node-engine/ contains the implementation
of the Node Engine.

• oakestra/oakestra-net [55]: This repository con-
tains the Root, Cluster, and Worker network compo-
nents. Note that the networking stack is not mandatory in
Oakestra. Without oakestra-net, the developer can
deploy applications on the infrastructure, but the appli-
cations will not be able able to carry out network-related
tasks. Since our experiments utilize network-capable ap-
plications, our experiment’s README provides detailed
instructions regarding the installation of these compo-
nents.

• experiments [53]: To replicate the experiments, we
provide an Experiments/ folder that includes the setup
instructions to create your first Oakestra infrastructure
and a set of scripts to automate the results collection
procedure once the infrastructure is set up as shown in
Table 1.

Requirements

We recommend the following minimum requirements for each
Oakestra component.

1. Root Orchestrator: 2GB of RAM, 2 Core CPU, ARM64
or AMD64 architecture, 10GB disk, docker compose in-
stalled. Tested OS: Ubuntu 20.20, Windows 10, MacOS
Monterey.

Folder Description

Test 1 Deployment overhead calculation (figs. 5 and 7)
Test 2 Network overhead measurements (fig. 8)
Test 3 Bandwidth measurements (fig. 12)
Test 4 Control message measurements (fig. 11)
Test 5 Scalability stress test experiments (fig. 6)
Test 6 AR pipeline experiments (fig. 9)

Table 1: Experiments test folders

2. Cluster Orchestrator: 2GB of RAM, 2 Core CPU,
ARM64 or AMD64 architecture, 5GB disk. Tested OS:
Ubuntu 20.20, Windows 10, MacOS Monterey.

3. Worker Node: Linux Machine, 1 Core CPU, ARM64 or
AMD64 architecture, 2GB disk, iptables utility.

Beyond the Paper
The AE repository only contains the performance evaluation
of Oakestra. In addition to this appendix and the repo, the
Oakestra project provides extensive documentation [56] on
how to use Oakestra in a variety of infrastructure configu-
rations and applications. In addition, interested researchers
are welcome to join the community via GitHub [52] or Dis-
cord [51].

	Introduction
	Background and Related Work
	Oakestra Overview
	System Architecture
	Resource and Service Management
	Service Schedulers in Oakestra

	Application Lifecycle
	Service Communication
	Service Naming and Addressing
	Connection proxying and tunneling

	Fault Tolerance.

	Implementation
	Evaluation
	Service Deployment
	Scalability
	Networking
	Scheduler Performance
	Control Communication Overhead
	Video Analytics Application

	Conclusion
	Oakestra Frontend
	Artifact Appendix

